
CIS335 Assignment 5 (Assessed)

Game Playing in Prolog
Geraint Wiggins

1 Introduction

This practical is the second formally assessed exercise for 3rd years students on the CIS335: Logic
Programming module. The intent is to implement a simple game – Merels – from first principles.
Certain parts of the program (such as input/output) are supplied in library files.

This practical counts for 10% of the marks for this course. In itself, it is marked out of 100, and
the percentage points available are shown at each section.

2 How to play the game

The modern rules of Merels date from the Middle Ages, though there is evidence that a simpler version
of the game existed as long ago as 1400BC. Like many games, the rules are simple, but the emerging
possibilities are complex. We start with a board made up of lines connecting points, like this:

c

f

g

d e

b

h i

j k l m on

q r

s t u

v w x

p

a

I have labelled the points with letters for easy reference. Note that you must stick to this labelling,
otherwise the supplied library code may not work.

There are the rules of Merels, taken from Past Times’ compendium of “Cloister Games”:

“Starting with nine men (merels) each, you place alternately one at a time on to any
vacant point on the board. Each time you manage to form a [straight] row of three merels,

1

creating a mill, you may remove any one of your opponent’s merels, though not one which
is in a mill. When all the merels have been entered on to the board, you continue taking
turns by moving one merel to an adjacent point along a line, with the object of making a
mill. You win the game if you manage to block your opponent’s merels so they cannot be
moved, or if you reduce him/her to only two merels.

You may make or break the same mill any number of times, capturing one of your op-
ponents merels each time you make a mill. If you are left with only three merels on the
board forming a mill and it is your turn, you must [still] move and break the mill.”

There are some simple strategies which will help a computer win at Merels. They do not involve any
real planning, but can often lead to a win, or at least hold off a loss. Applied in this order, they are:

1. If there is a mill to be made, make it; if opponent is able to make a mill, remove one of the
relevant pieces;

2. If opponent is about to make a mill, block it if possible;

3. Place pieces on points with many connections, where possible;

4. Otherwise, move your pieces closer together.

We will use these simple heuristics at the end of the practical.

3 The Implementation

3.1 Program structure

This practical is quite strictly structured, so as to give a feel for how good program design is done.
Even if you are an experienced programmer, please follow the style here. In particular, you must
follow the instructions for data-representation, or else the supplied code will not work.

3.2 Library software

In this practical, you will be using the lists library and the merels support.pl file which you
can download from the CIS335 home page. You access the libraries by using the use module/1
predicate – just put the following at the top of your program file:

:- use module([library(lists), merels support]).

The library modules contain useful predicates, which saves you repeating other people’s work.
The lists library is documented in the SWI Prolog manual:

http://gollem.science.uva.nl/SWI-Prolog/Manual/

The other library is built specifically for this practical. merels support.pl exports 11 predi-
cates, which work as follows:

display board/1 prints out a representation of the board, depending on what symbols you have
used to represent the two player’s merels. Its argument is your representation of where the
merels are on the board. If the representation is correct, it always succeeds. Argument: Board.

2

get legal place/3 requests the name of a point, checks that it is empty, and returns it to the
main program. It keeps asking until a legal name is given (ie a point on the board which is
not already taken). If the representation is correct, it always succeeds. Arguments: Player,
Point, Board.

get legal move/4 requests the name of a point, checks that it is occupied by the current player,
requests the name of another point, checks that it is connected and empty, and then returns both
to the main program. It keeps asking until a legal point given. If the representation is correct, it
always succeeds. Arguments: Player, OldPoint, NewPoint, Board.

get remove point/3 requests the name of a point, checks that it is occupied by the opponent,
and deletes the occupying merel. It keeps asking until legal names is given. If the representation
is correct, it always succeeds. Arguments: Player, Point, Board.

report winner/1 prints out a warning that there is a winner – the player named in the one argu-
ment. It always succeeds. Argument: Player.

report move/2 always succeeds and prints out a statement of a new placment. Argument 1 is the
player, 2 is the point taken.

report move/3 always succeeds and prints out a statement of a new move. Argument 1 is the
player, 2 is the point vacated, 3 is the point taken.

report remove/2 always succeeds. Argument 1 is the player, and Argument 2 is the point from
which a merel is being removed.

welcome/0 prints out a welcome to the game. It always succeeds.

empty point/2 succeeds if the point name which is its first argument is empty in the representa-
tion of the board which is its second. Beware of floundering here!

check mills/4 compares two consecutive board states and succeeds if a Player has made a new
mill on the second. If appropriate it allows a Player to choose a merel to remove. It returns the
final state of the board. Argument 1 is the Player, Argument 2 is the old board, Argument 3 is
the new board, and Argument 4

You can look at the definitions of these predicates in the file merels support.pl, but you do
not need to do so to complete this practical.

3.3 The Practical

The following sections lead you through the practical step by step. You should be able to test your
code at all times, and you will not need anything beyond what has been covered in the lectures or
what is in the libraries. You do not need to understand how the library code works to complete the
practical. It is imperative that you follow the instructions closely; otherwise, some of the library code,
which uses your code, may not work.

3

3.4 Board representation (15%)

Design a representation for the empty board, using a Prolog predicate. The representation should
reflect what is important about the board for the purposes of the game, and it should not include
superfluous information.

You will also need a one-character symbol for each player. (It needs to be one-character to fit in
with the library software.) We will use a list of point-merel pairs to indicate which points on the
board are taken by which player.

Implement the following predicates. Don’t worry about error checking in your program – just
make sure predicates succeed when you want them to, and fail at all other times. Wherever possible,
implement each predicate in terms of predicates you have already defined. Note that you may not need
to use all these predicates in your final program, but some of them are used in the libraries. Unless
otherwise stated, all of these predicates may be called in any mode – that is, you should not assume
that any argument will be instantiated.

is player1/1 succeeds when its argument is the player 1 character in the representation.

is player2/1 succeeds when its argument is the player 2 character in the representation.

is merel/1 succeeds when its argument is either of the player characters.

other player/2 succeeds when both its arguments are player representation characters, but they
are different.

pair/3 succeeds when its first argument is a pair (in whatever representation you choose) made up
of its second, a point, and its third, a merel.

merel on board/2 succeeds when its first argument is a merel/point pair and is second is a rep-
resentation of the merel positions on the board. Argument 2 is assumed to be instantiated.

row/3 succeeds when its three arguments are (in order) a connected row, vertical or horizontal, in
the board.

connected/2 succeeds when its two arguments are the names of points on the board which are
connected by a line (i.e., there is a valid move between them).

initial board/1 succeeds when its argument represents the initial state of the board.

Remember to document your chosen representation clearly in comments.

3.5 Spotting a winner (15%)

We need a predicate to tell us when someone has won.

and the winner is/2 succeeds when its first argument represents a board, and the second is a
player who has won on that board. (Hint: use the predicates above here; you need 2 clauses,
one for each way of losing.)

Test your predicate on some hand-made data.

4

3.6 Running a game for 2 human players (25%)

To start off with, we will build a program which acts as a board for two human players, displaying
each move, and checking for a win.

We will assume that player 1 is always going to start. We will use a predicate called play/0 to
begin a game, defined as follows:

play :- welcome,
initial board(Board),
display board(Board),
is player1(Player),
play(18, Player, Board).

You will need to define a further predicate to make this work:

play/3 is recursive. It has three arguments: the number of merels not yet placed, a player, and a
board state. For this section of the practical, it has three possibilities:

1. All the merels have been placed, the board represents a winning state, and we have to
report the winner. Then we are finished.

2. Not all the merels have been placed. We can get a (legal) placing from the player named
in argument 1, fill the point he or she gives, check for any new mills, and ask which piece
to remove if so, display the board, switch players and then play again, with the updated
board and the new player.

3. All the merels have been placed. We can get a (legal) move from the player named in
argument 1, move the merel he or she gives, check for any new mills, and ask which piece
to remove if so, display the board, switch players and then play again, with the updated
board and the new player.

When you get to this point, test out your program thoroughly, playing several games, trying out the
various possibilities for winning, drawing etc. A good thing to test is the working of the program with
only 6 merels instead of the full 18.

4 Running a game for 1 human and the computer (20%)

Having checked out the part of the program which runs the game and displays it, we now need to
extend the program to play itself. We will assume that it will always be player 2.

To do this, we will need to adapt steps 2 and 3 of the play/2 predicate defined above. Place that
part of your code in /*...*/ to comment it out, and put the text “code for section 3.6” in
the comment.

We have to replace parts 2 and 3 of play/3 with two new parts each:

play/3 contd. Each non-winning part of the second version of play/3 has two possibilities:

a. Player 1 is current, we can get a (legal) move/placement, fill the square, display the board,
and play again, with the new board and with player 2 as current player (this is almost
exactly like the original play/3 above).

5

b. Player 2 is current, we can choose a move/placement (see below), we tell the user what
move or placement we’ve made (see merels support.pl), we can fill the square,
display the board, and play again, with the new board and with Player 1 current.

and you will also need a new version of check mill/4 - one which will choose which merel to
remove by itself.

5 Implementing heuristics (25%)

In order to make the computer play, we need to implement three more similar predicates:

choose place/3 which succeeds when it can find a place to put a new merel. It will have several
alternatives, corresponding with the heuristics you choose to implement; the last clause looks
like this:

% dumbly choose a point
choose place(Player, Point, Board) :-

connected(Point,),
empty point(Point, Board).

choose move/4 which succeeds when it can find a merel to move and a place to move it to. It will
have several alternatives, corresponding with the heuristics you choose to implement; the last
clause looks like this:

% dumbly choose a move
choose move(Player, OldPoint, NewPoint, Board) :-

pair(Pair, OldPoint, Player),
merel on board(Pair, Board),
connected(OldPoint, NewPoint),
empty point(NewPoint, Board).

choose remove/4 which succeeds when it can find a merel to remove. It will have several alter-
natives, corresponding with the heuristics you choose to implement; the last clause looks like
this:

% dumbly choose a removal
choose remove(Player, Point, Board) :-

pair(Pair, Point, Player),
merel on board(Pair, Board).

You are invited to use the heuristics specified earlier and/or ones of your own invention to complete
this practical. Note that you will NOT be marked on how well your program plays Merels – rather,
assessment will be in terms of how well your program is implemented. Feel free to discuss Merels
strategy with your friends, if you don’t feel confident to make up your own heuristics, but want to
use something better than those specified here. As usual, however, you MUST NOT share more than
ideas: all the code you submit must be your own.

If you decide to implement your own heuristics, you MUST comment them clearly – otherwise,
your cleverness may be confused with a mistake!

6

6 Assessment

The minimal core of this practical is considered to be the part up to and including section 3.6; most
students should expect to finish the whole program, with one or two heuristics implemented.

7 Submission

By 7pm on Friday 4th December, you must submit your solution in electronic form, in the CIS335/5
assignment folder in your Department of Computing home space.

7

